Adipose-Induced Regeneration of Scalp (AIR-Scalp) to Treat Radiation Injury

Adipose-Induced Regeneration of Scalp (AIR-Scalp) to Treat Radiation Injury poster



Research Authorship:

Whisper Grayson, Mentor: Dr. Rachel Sarabia-Estrada, D.V.M., Ph.D.

Faculty Mentor:

Dr. Judith D. Ochrietor | College of Arts and Sciences | Department of Biology


Whole brain radiation therapy is a common treatment for cancer patients. After radiation, approximately 95% of the patients can experience acute and/or chronic side-effects: Radiation dermatitis, fibrosis, and chronic ulcers. The purpose of this study was to examine the effects of adipose-derived products (ADPs) in an animal model of radiation dermatitis. We hypothesized that ADPs would enhance wound healing and regenerate the skin; improving cellularity, vascularity, and decreasing scar tissue formation. Immunocompromised mice received a 0.5 cm skin incision on their scalp, which was closed with surgical glue. After 2 weeks, the mice received focal radiation using a 5 mm collimator: 0 Gy, 20 Gy single, and 40 Gy fractionated (8 Gy/day for 5 days) doses were used. After 2 weeks, mice were randomized into 4 groups and received a subcutaneous injection of 1) FAT-graft, 2) Stromal vascular fraction, 3) Adipose-derived mesenchymal stem cells, and 4) PBS. ADPs were isolated from lipoaspirate samples, obtained from non-cancer human patients. Two weeks after the ADPs treatments, mice were euthanized and skin samples were collected and processed for histology. Histological staining (H&E) was used to evaluate skin integrity after radiation. Results from the 20Gy group showed that the mice developed mild dermatitis 2 weeks after the radiation treatment that subsequently healed after ADPs treatment. No histological differences were observed between groups. While this study is ongoing (40Gy), it is hopeful that these results will offer an innovative way to treat radiation-induced damage in cancer patients.

1 thought on “Adipose-Induced Regeneration of Scalp (AIR-Scalp) to Treat Radiation Injury”

  1. Karen Cousins

    This is an outstanding faculty-mentored research project with important implications. Very well done, Whisper.

Comments are closed.