Research Authorship:
Tracy Leung, Mya Salas, Dylan Wilson
Faculty Mentor:
Dr. Daniela Genova | College of Arts and Sciences | Department of Mathematics and Statistics
Abstract:
A planar graph is a graph that can be drawn in such a way in the plane, so that no edges cross each other. In other words, it is a graph that can be embedded in the plane. We discuss the conditions that make a graph embeddable on a sphere with k handles. Then, using vertex deletions and edge contractions, which produce graph minors, we examine if a graph is minimally nonembeddable on a surface. To conclude, we discuss an important result, that the set of minimally nonembeddable graphs on a surface is finite.